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Normalization of marks in multi-session

examinations

Abhay G. Bhatt, Sourish Das and Rajeeva L. Karandikar*

When a test is conducted in several sessions using distinct question papers, normalization of scores
is required to have a fair assessment of the candidates. Several selection tests nowadays are con-
ducted in multiple sessions (using multiple choice questions). In this article we discuss various
normalization schemes used in India when an examination involving multiple choice questions is
conducted across various sessions. We illustrate through simulation, that the percentile-based
normglization scheme outperforms all the other schemes.

Keywords: Multi-session examinations, multiple choice questions, normalization schemes, test scores.

IN recent times, examinations involving large number of
candidates have been using multiple choice questions
(MCQs). One reason for preferring these over traditional
essay-type examinations is the enormous effort required
to grade large number of answer books in a short time
span in the latter case.

Till a few years ago, in most MCQ-type tests, the can-
didates marked the answer by pencil on specially format-
ted answer sheets. The sheets were read by a machine to
capture the answers and results were prepared.

Over the last decade, some of these MCQ-type tests are
administered via computers — candidates read the ques-
tions on a computer terminal and give their answers using
mouse and keyboard, which are instantly captured in a
database. This method has obvious advantages. It
removes the need for printing large number of question
papers and sending them to various centres, thus reducing
the chances of foul play.

However, one limitation this brings in is that it puts an
upper bound on the number of candidates that can appear
in a test, as we need as many computer terminals as there
are candidates. If the number of candidates is much larger
than the number of computer terminals available for
administering the test, the way out is to create two or
more (as many as required) question papers. Candidates
are divided in groups so that each group can be adminis-
tered the test in one time slot and for each group, a
distinct question paper is used.

The institution or the entity conducting the examina-
tion tries to ensure that the different question papers are
of a same level of difficulty. In practice, however, this is
difficult to achieve.
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If a question could be used on multiple occasions, the
difficulty level could be estimated statistically based on
the earlier occasions when it was used. This is what is
done in examinations such as GRE, TOEFEL, etc. where
the questions are chosen out of a question bank and then
suitable methods such as item response theory (IRT) are
used to get the final score of each candidate' . However,
this is not commonly done in India — in most examina-
tions, a question once used in a test is not used again.
This rules out use of IRT. Thus, the only way to assess
the difficulty level of each question is using the opinion
of experts. However this does not ensure that all question
papers have the same level of difficulty as the perception
of experts about difficulty levels is subject to judgemental
errors.

The question then arises as to how can one compare the
performance of two candidates who have appeared for the
examination in two different shifts (and hence answered
two different sets of questions).

This is being done by normalizing the marks of candi-
dates in different shifts by putting them on a common
scale in such a way that makes them amenable to compar-
isons. These normalized marks or scores are then used to
rank the candidates for selection for admission or job, or
for further screening.

For this, the candidates are assigned randomly to dif-
ferent sessions (or time slots) so that we can be assured
that the talent that we are looking for is equally distri-
buted across these sessions. Thus, if we see that the
marks in one group are more than that in another group,
we can conclude that this is mainly due to difference in
difficulty levels. Thus to be fair to the candidates and to
select the best candidates from among the applicants,
some correction needs to be applied. This is achieved by
normalizing the marks.

Various methods are used in practice for normalization
of marks. These involve transformations of the raw
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scores, or the actual marks secured by the candidates.
These transformations are typically based on some statis-
tical quantities — like mean, standard deviation, percen-
tiles, etc. of the scores in that shift or that of a subset of
this dataset.

The results of the transformation will give normalized
scores which then can be used to rank the candidates
across the different shifts.

We have seen data from various selection tests con-
ducted across India in the recent past and it has been
observed in few cases that the selected candidates were
dominated by those appearing in one or two sessions
while some sessions were highly under represented. The
discrepancy was so much that the end-user agencies
themselves were wondering as to how to defend the same
if challenged in a court of law. This raises the question as
to which is the right method of normalization.

Different normalization methods will give different
rankings of the candidates. It is then necessary to know
which normalization methods are reasonable and which
are not so good, or, out of a set of proposed methods,
which one is the best.

Normalization schemes

In the description below, we assume that there are k ques-
tion papers (administered in k distinct time slots). We de-
note by G, the set of candidates who answered the ith
question paper. We describe four methods of normalization
in this section and compare them in the following section.

z-Score method

One of the most commonly used methods of normaliza-
tion is to transform the score using mean and standard
deviation. For every group G,, the mean marks £; and
standard deviation of marks o; among all the candidates
in the group G, are calculated.

The marks s of a student in the group G; are trans-
formed to T(s) by the transformation

T(5) = 4= 1) 2 )

1

where y;, 0; are the mean and standard deviation of the
marks of candidates in the ith group and x* =max
{uy:1<1<k}and o*=max{o;: 1 <I<k}.

Thus for a candidate with raw score S and belonging to
the group G, his/her normalized score is T(S).

The normalized scores of all candidates are taken
together to generate the ranks or merit list. This formula
has an advantage that the normalized score of each candi-
date is larger than or equal to his/her raw score. However,
the normalized score can be higher than the maximum
score.
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Other choices of #* and o* are also used; for example,
o* could be the standard deviation in the group with
highest mean. It can be seen that the ranks (or the merit
list) produced by different choices of 4* and o* are the
same. Indeed, denoting by

E(s)= (s—44) : 0))

g;

it can be seen that the ranks produced by {7;: 1< i<k}
for any choice of #* and o* (with o* > 0) are the same
as the ranks produced by {E;:1<i<k}. Thus we call
E(S) as the standardized score of a candidate with score §
from group G;. We refer to this as the z-score method.

w-Score method

The standardization using eq. (1) is perhaps motivated by
the belief that when there are a large number of candi-
dates in each group, the distribution of marks in each
group would be normal and the standardization via eq. (1)
would transform them to the same distribution, namely
standard normal distribution.

Looking at scores of several examinations with a large
number of candidates we have seen that in most situa-
tions, the distribution of marks is far from normal —the
deviation is maximum in the tails of the distribution. In
cases where the examination is to be used for selection,
the interest is in the candidates whose scores are in the
top few per cent or the upper tail of the score distribution.

In view of this, another method considered is as fol-
lows: suppose the top 1% candidates are to be selected.
Then let

F(s) =-(Lfl 3)

1

where ¢, 6, are the mean and standard deviation of the
marks of top 1% candidates in the ith group. This yields
the standardized scores of candidates —the score of a
candidate in the ith group with score S is Fi(S). We call
this the w-score method.

g-Score method

Another method currently being used in India, including
for GATE and CAT, is the following (subsequently called
the g-score method). Here the normalized score is given by

(ﬂ_a) (4)

M(s)=a+(s—-a;) 7 _ai),

where « is the sum of mean and standard deviation of all
candidates, ¢ the sum of mean and standard deviation of
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all candidates in the group G
of all candidates and g,
candidates in group G,.

Let us note that here if we take the standardized score

up G, Bthe mean of the top 0.1%
is the mean of the top 0.1% of all

as

(s-a)

Ni(s)z(ﬁl_ai)) (5)

th.en the rankings ‘produced by the standardized scores
given by eq. (5) and normalized scores given by eq. (4)
are the same. We call this the g-score method.

p-Score method

Here, instead of the transformation by mean and standard
deviation, the percentile score in each session is taken as
the standardized score. This has an advantage as it does
not assume any specific form of the distribution of marks.
It does not even require that the distributions across the
groups be the same.
It should be noted that when the data have ties (which
is invariably the case when we have data on scores of a
large number of candidates), the ranks are not uniquely
defined and each statistical software has its own default
method. Thus the method to resolve the ties has to be
specified by the end-user. In the context of normalization,
it makes sense to assign equal score to the toppers in all
the shifts. This is achieved by defining the standardized

score P(s) corresponding to a score s of a candidate in
the group G; as follows:

I

P(s) =@ ©

1

where y(s) is the number of candidates in the ith shift
scoring less than or equal to s marks, and A; the total
number of candidates in the ith shift who appeared for the
examination. We call this the p-score method.

We have thus described four methods of transforming
raw scores of candidates across the k groups {G;:1<i
<k} to standardized scores via the transformations {E;, :
1<i<k} (z-score), {Fi,:1=<i<k} (w-score), {N,:
1 < i<k} (g-score) and {P;,: 1 < i<k} (p-score).

The standardized scores can then be transformed to a
suitable scale to bring it say, in the same range as the raw
scores, or between 0 and 100. The transformation of stan-
dardized scores to normalized scores is via one fixed
increasing function so that the ranks based on standar-
dized scores are the same as those based on normalized
scores. This has a psychological aspect — candidates are
upset if the normalized score is less than their raw score,
but are happy if it is more. However, if only ranks matter,
then only standardized score matters and the final trans-
formation to convert to normalized score is not important.
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The choice of this transformation is important if the
normalized score is used, over and above the ranks, for
any decision making, say, when it is combined with a
score in the interview to generate the final ranking.

Comparisons via simulation

Since the aim of normalization (or standardization) is to
correct for difference in difficulty levels of two examina-
tions, let us consider the ideal case, when the two ques-
tion papers are of the same difficulty level.

So if we assume that all candidates actually answered
the same question papers but have been randomly tagged
as group 1, group 2, etc.

Then if we are selecting say p% of the candidates, then
roughly p% candidates from each group should make it to
the selected list. So the difference between selected
proportions across the groups is an indication of the
distortion the normalization method is introducing.

If x1, x,, ..., x;, are the proportions of candidates in
each group that are selected, and if p = p/100, then the
quantity

(max{x, :1<i <k} —min{x, :1<i < k})

p

denotes deviation, and higher the deviation, the worse we
are from ideal selection criterion. We express this as a
percentage

_(max{x; :1<i<k}-min{x, :1<i<k}) N

D - 100,
p
Table 1. Two groups — score distribution: normal
Mean SD 01 o2 o3
z-Score 6.07 4.58 2.45 5.12 8.74
w-Score 5.31 3.99 2.12 4.50 7.70
g-Score 17.03 12.69 6.90 14.54 24.52
p-Score 0.20 0.11 0.10 0.20 0.30
1.00-
0.75-
% 0.50- Variable
o
—— 2z-Score
— w-Score
0.25~ — g-Score
— p-Score
0.00-
0 10 20 30 40 50
Deviation
Figure 1. Two groups — score distribution: normal.
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Consider the case of two groups, each of 25,000 candi-
j dates anq the target is to select 1% candidates. If instead
of selec:,tmg 250 from each group, we select 225 and 275
;eos;ectwely, from the two groups, the deviation becomes

0.
The deviation thus measures the gap between maxi-

mum and minimum across groups as a percentage of the
target number from each group.

Table2. Two groups — score distribution: Laplace

Taking the number of groups to be two and 25,000
candidates from each group, we will simulate scores of
the candidates from a normal distribution and for each of
the four methods of normalization, we compute the devia-
tion d. We will repeat this 20,000 times. Thus for each of
the four methods we obtain the distribution of the devia-
tion. Table 1 gives the mean, standard deviation and the
three quantiles for each of the four methods. Figure 1

Table 4. Two groups — score distribution: £(3)

Mean SD o)\ Q2 o3
z-Score 5.79 432 2.34 4.94 8.34
w-Score 6.83 5.19 2.72 5.76 9.81
g-Score 18.89 14.12 7.63 15.98 27.29
p-Score 0.20 0.12 0.10 0.20 ©0.30

Table 3. Two groups — score distribution: uniform

Mean SD 01 2 03
z-Score 11.85 14.34 3.90 8.34 14.94
w-Score 27.52 22.44 10.28 22.17 39.06
g-Score 41.13 30.62 16.65 35.14 59.55
p-Score 0.20 0.12 0.10 0.20 0.30

Table5. Five groups — score distribution: normal

Mean SD 01 o2 03
z-Score 24.96 18.82 10.06 21.06 36.19
w-Score 2.59 1.94 1.03 222 3.76
g-Score 6.79 5.14 2.70 5.70 9.82
p-Score 0.20 012 010 0.20 0.30

1.00- "
0.75-- ==
5 0.50-:| N
° Variable
; —— z-Score |
0.25- . — w-Score
! — g-Score |
p-Score |
0 10 20 30 40 50
Deviation
Figure 2. Two groups — score distribution: Laplace.
1.00-
0.75 g
5 0.50- e
© 0.50 Variable
— z-Score
— w-Score
DR — g-Score
— p-Score
0.00-=750 7 . ' . :
0 10 20 30 40 50

Deviation

Figure 3. Two groups — score distribution: uniform.
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Mean  SD 01 o2 03
z-Score 12.59 4.66 924 1224 15.52
w-Score 11.02 413 802  10.69 13.60
g-Score 34.76 12.87 2545  33.66 42.87
p-Score 032 007 . 028 0.34 037

1.00-

075-"
= Ry :
3 0.50- SRRy 0 6
i Variable
y {—— zScore .-
0.25- | '~  — w-Score -
' — g-Score i
; — p-Score’|
0.00 < 2 g e it
T ’ =1 U . »
0 10 20 30 40 50
Deviation
Figure 4. Two groups — score distribution: #(3).
1.00-
0.75-"
5 0.50- el
© i Variable
— z-Score !
0.25 - — w-Score :
—— g-Score
— p-Score
0.00~ ) 270,
1 L} U} " 1 U
0 10 20 30 40 50
Deviation

Figure 5. Five groups —score distribution: normal.
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e

gives the (estimated) cumulative distribution function
(cdf) of the deviation D. :

We can see that the p-score method performs the best,
with mean of the deviation being only 0.2, the z-score and
w-score are comparable with mean of the deviation above
5 and the g-score performs very poorly, with mean being
over 17. Indeed, we can see from the cdf that the graph
for p-score rises to 1 sharply, while the other graphs rise
gradually — this means that for p-score, the deviation is
less than 1% with a very high probability (over 99%).

Table 6. Five groups — score distribution: Laplace

We now come to the case when the underlying distri-
bution is Laplace. Table 2 and Figure 2 give results when
the score distribution is Laplace. We see that the p-score
still performs well and the g-score is the worst.

Next we take score distribution to be uniform. Table 3
and Figure 3 show the results. This time we see that while
the p-score method is the best and very good, the z-score

performs rather poorly.
Table 4 and Figure 4 show results for the case where

the underlying score distribution is ¢ with three degrees of

Table 8. Five groups —score distribution: #(3)

Mean SD 01 Q2 o3
z-Score 11.84 4.39 8.69 11.54 14.61
w-Score 1429 5.57 10.28 13.66 17.63
g-Score 39.14 14.51 28.60 38.06 48.36
p-Score 0.32 0.06 0.28 0.34 0.37
Table7. Five groups — score distribution: uniform
Mean SD o1 Q2 o3
z-Score 51.00 18.99 37.14 49.39 62.89
w-Score 5.33 1.99 3.89 5.17 6.58
g-Score 14.08 5.21 10.30 13.68 17.44
p-Score 032 0.07 0.28 0.34 0.37
1.00- ] i
0.75-:';:1 et
5 0.50- | s
Variable
{ — z-Score
0.25- + — w-Score
! — g-Score
! — p-Score
0.00 g8 e b o o
0 10 20 30 40 50
Deviation
Figure 6. Five groups —score distribution: Laplace.
1.00-
Variable
0.75- | = - —— z-Score
— w-Score ;
— gScore |
% 0.50-"' — p-Score -
0.25-
0.00-
0 10 20 30 40 50
Deviation
Figure 7. Five groups — score distribution: uniform.
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Mean SD Q1 2 o3
z-Score 24.00 15.37 14.68 20.24 28.25
w-Score 72.06 4797 39.83 58.04 88.80
g-Score 84.69 31.72 61.88 81.81 104.20
p-Score 0.32 0.07 0.28 0.34 0.37
Table 9. 75 groups — score distribution: normal
Mean SD [0 o2 o3
z-Score 25.86 3.32 23.66 25.66 27.92
w-Score 23.22 342 20.83 22.93 25.21
g-Score 71.56 9.66 »64,96 70.43 77.69
p-Score 0.39 0.01 ~ 039 0.40 0.40
1.00-
Variable
0.75- — z-Score
— w-Score
—— g-Score
g 0.50- — pScore
0.25-
0.00--
0 10 20 30 40 50
Deviation
Figure 8. Five groups — score distribution: #(3).
1.00-
0.75-
g 0.50- Variable
— z-Score
— w-Score
0.25- S o Seore
— p-Score
0.00-
0 10 20 30 40 i
Deviation

Figure 9. 75 groups — score distribution: normal.
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freedom. This time we see that while the p-score method
is the best and very good, the other methods perform
rather poorly.

The discrepancies increase when the number of parallel
sessions increases. We illustrate the same via simulation
when we have five groups. The results are given in
Tables 4-8 and Figures 4-8.

We can see that while the p-score method continues to
do well, for all the other methods, deviations are more
than what they were in case of two groups. When using
the g-score method, if the score distribution is #3), then
with 50% probability we are likely to see a deviation of
over 80%. This means, while we are targeting 250 candi-
dates from each group, the gap between minimum and
maximum number of candidates across groups is over
200.

We will like to add that for a given question paper we
do not know before hand as to what would be the distri-
bution of scores. Thus, it makes sense to use a method
that makes no assumption about the underlying distribu-
tion. The p-score is such a method.

The distortion only increases if the number of groups
increases. We are giving here the statistics of deviation
when there are 75 groups — only when the distribution is
normal (Table 9 and Figure 9). In other cases, the
methods other than the p-score method do much worse.

Final recommendation

We have argued that the standardization step should use

percentile score (in each group). The topper in each group
would have score 1.

If this score is to be used further, one could transff)rm
it suitably. One possibility is to multiply the standardized
score by 100 to yield a score between 0 and 100.

Yet another possibility is to conYen the scores to a
range that is different from the original (raw) scores s0
that no one considers that their scores were reduced in
normalization. Also, one could avoid fractu_)nal scores.
Here is a suggested transformation that will map the
scores to an integer in range 300-800

7,(s)*500
/1. ’

(

W,(s) =300+ ™

where % (s) is the number of candidates in t}}e ith shift
scoring less than or equal to s marks, and A is the total
number of candidates in the ith shift who appeared for the
examination.

The final normalized score Xi(S) of a candidate in ith
group with score S is defined as the smallest integer
greater than or equal to W(S). The topper in each group
will have a score of 800.
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